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Abstract 
 

The purpose of this study is to design a new lightweight 

explainable deep model instead of deep neural networks 

(DNN) because of its high memory and processing resource 

requirement as well as black-box training although DNN is 

a powerful algorithm for classification and regression 

problems. This study propose a non-neural network style 

deep model based on combination of deep coupling random 

ferns (DCRF). In proposed DCRF, each neuron of a layer 

is replaced with the Fern and each layer consists of several 

type of Ferns. The proposed method showed a higher 

uniform performance in terms of the number of parameters 

and operations without a loss of accuracy compared to a 

few related studies including a DNN based model 

compression algorithm.  

1. Introduction 

Recently, deep neural networks (DNNs) have been very 
successful in many applications of supervised learning such 
as visual and speech recognition. DNNs are very powerful 
recognition algorithms, but it also has many limitations.  

In terms of algorithms, DNNs requires a large number of 
hyper-parameters such as learning rate, cost function, 
normalization, mini-batch, etc. Moreover, learning 
performance of DNNs depends seriously on careful 
parameter tuning to generalize effectively and it requires 
large amounts of learning data to avoid overfitting. The 
biggest problem is that DNNs is a black box model, so it is 
difficult to understand the learning process except for 
incoming and outgoing data [1][2]. In addition, the structure 
of the model should be determined before DNNs is learned.  

In terms of system resource, DNNs requires extremely 
expensive computational resource to train multiple layers 
of nonlinear activation functions based on backpropagation. 
Therefore, DNNs cannot operate training medium-to-large 
network on a single CPU because it uses large amounts of 
memory as well as long training time [2]. In particular, 
because wide and deep top-performing networks are not 
well suited for applications with memory or time limitations, 
some researches [3] [4][5] [6] have been tried to reduce the 
convolution layer of DNNs for improving the compression 

rate as well as the overall speedup. However, compressed 
DNN models still demands high memory for a large 
amounts of parameters and processing resource for 
multiplication [6].  

To build a lightweight, explainable deep model that does 
not require backpropagation while maintaining the superior 
performance of DNN, [1] and [2] proposed a deep forest 
(DF) [1] and deep random forest (DRF) [2] that combines 
decision trees. In these researches, each neuron of a layer is 
composed of the individual decision trees and each layer is 
considered as a type of random forest. This random forest 
based networks can be quickly trained layer-by-layer 
instead of paying the high computational cost of training a 
DNN all at once [2]. These decision tree ensemble 
approaches have much fewer hyper-parameters than a DNN, 
and complexity can be determined automatically in a data-
dependent manner. Experimental results show that the 
performance is quite robust to hyper-parameter setting and 
gave excellent performance compared to DNN based 
methods [1].   

In general, ensemble of multiple random forests [1] or 
multiple decision trees [2] are used for individual layer of 
the deep architecture and the output of random forest or 
decision trees are passed to subsequent layers. The main 
advantage of the decision tree ensemble is that it achieves 
higher tree diversity by choosing features for the split 
function in a different way and improve generalization by 
combining randomized decision trees compared to single 
decision tree. 

The decision tree creates a split function based on 
information gain for each node to grow the tree. However, 
such a node evaluation scheme has a problem of decreasing 
the diversity of the tree and increasing the generalization 
error of the tree ensemble. Therefore, this paper uses the 
random ferns (RFs) to make individual layer of a deep 
model instead of random forest because of following 
reasons: 

• One Fern works the same as one decision tree does. The 

decision tree classifies samples into a top-down form, but 
Fern classifies samples into a combination of binary tests. 

• Ferns do not perform evaluations regarding the binary 

tests that comprise the Ferns.  

 

Deep Coupling of Random Ferns 
 

Sangwon Kim, Mira Jeong, Deokwoo Lee, Byoung Chul Ko 
Dept. of Computer Engineering 

Keimyung University, Daegu, Korea 42601 
{eddiesangwonkim, mystroll24}@gmail.com,{dwoolee,niceko}@kmu.ac.kr 

http://cvpr.kmu.ac.kr 

 

5

mailto:eddiesangwonkim,%20mystroll24%7d@gmail.com,%7bdwoolee,
mailto:niceko%7d@kmu.ac.kr


 

226 

• Binary tests used in RFs can improve diversity because 

they are selected completely randomly. 
• RFs is particularly easy to implement, does not overfit, 

does not require ad hoc parameter tuning, and allows fast  
and incremental training [7]. 

• Ferns are just as reliable as the randomized trees but much 

faster and simpler to implement [7]. 
Because the performance of the RFs is based on the fact 

that when the tests are chosen randomly, the power of the 
approach derives not from the tree structure itself but from 
the fact that combining groups of binary tests allows 
improved classification rates. 

In proposed deep coupling RFs (DCRF), each neuron of 
a layer is replaced with the Fern and each layer consists of 
several type of Ferns. Let’s assume that the value of 
features 𝑓𝑛  are the outcome of a simple binary test only 
depends on the intensities of two pixel locations d𝑛,1 and d𝑛,2 of the input image I, 

                 𝑓𝑛 = {1 𝑖𝑓 𝐼(d𝑛,1) < 𝐼(d𝑛,2)0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   (1) 

Since features are very simple, many features are needed 
for accurate classification. However when the number of 
features is too large, learning the joint likelihood 
distributions over all features is most likely intractable. 
Therefore, Naive Bayes makes the simplifying assumption 
that features are conditionally independent given the class 
label 𝐶𝑘. However, although it is usually easy to learn the 
1-d conditional densities 𝑃(𝑓𝑖|𝐶𝑘) , this independence 
assumption is usually false and the resulting approximation 
tends to grossly underestimate the true posterior 
probabilities. Therefore, Özuysal [7] et al. grouped features 
consist of L small sets of size S to make the problem 
tractable while accounting for these dependencies. These 
groups are called as a Fern, F𝑙 = {𝑓𝑙,1, 𝑓𝑙,2, … , 𝑓𝑙,𝑆} and we 
can compute the joint probability for features in each Fern 
by assuming that groups are conditionally independent 
called Semi-Naïve Bayes: 

             P(f1, f2, … , f𝑁|𝐶𝑘) = ∏ 𝑃(𝐹𝑙|𝐶𝑘)𝐿𝑙=1               (2) 
A single Fern does not give great classification 

performance, but we can improve the classification 
performance by building an ensemble of independent Ferns 
by randomly choosing different subsets of features. From 
the Eq. (2), we learn the class-conditional distributions for 
each Fern and apply Bayes rule to obtain posterior by 
combining their outputs using Semi-Naive Bayes, Class(𝐟) ≡ arg max𝑘 𝑃(𝐶𝑘) ∏ 𝑃(𝐹𝑙|𝐶𝑘)𝐿𝑙=1          (3) 

At test time, each Fern consists of a small amount of 
binary test returns the probability for the input vector, 
which belongs to one of the learned classes during learning. 
These responses of Ferns are combined with the Naïve 
Bayes and finally classified into the class having the largest 
probability value. 

2. Cascading of Multi-layer Ferns 

The proposed DCRF is composed of an encoding model 
and a cascade forest model inspired by DF [1]. The 
encoding model transforms an input image into class 
probability features using multi-grained scanning, and a 
cascade Fern layers is used to estimate the final class by 
applying the transformed feature vector to the cascade of a 
cascade Ferns. DF [1] and DRF [2] apply multi-grained 
scanning (MGS) to the input image in order to extract 
feature vectors for the input of the first layer. These 
methods use the three window sizes, and a feature vector of 
each size is applied to each corresponding the random 
forests. The output vector of the first layer is the 
concatenation the results of each random forests.  However, 
one random forest of DF [1] must consist of 500 trees, and 
four random forests must form one layer. Therefore a DF 
[1] is not suitable for a real-time applications because it still 
has a deep and wide structure, which is difficult to process 
quickly and is optimized only for simple recognition 
problems. DRF [2] consists of only two layers consisting of 
2,000 decision trees per a single layer without the use of 
several random forests. However, this method also has a 
disadvantage in that the operation speed is slow owing to 
an excessive number of trees. 

In this paper, raw features are extracted by using one size 
of scanning window instead of MGS which requires many 
computation time and parameters. 

As Fig. 1 indicates, the proposed DCRF model consists 
of a layer-to-layer structure. The role of the first layer is to 
transform raw features into class probabilities, and these 
probability outputs are concatenated as a single transformed 
feature vector for the new input of the next layer. Input 
feature vector extracted from raw gray pixels are applied to 
two RFs composed of 16 Ferns which including 20 binary 
tests, respectively.  

From the second layer, each layer is used to generate a 
new feature vector for the next layer or to predict the final 
class at the final layer. In detail, one layer consists of five 
RFs, and one RF consists of 18 Ferns including 11 binary 
tests. 

With the proposed DCRF, each neuron of a DNN layer 
is replaced with the RF, and each layer consists of several 
types of four RFs. Each layer consists of randomly 
generated heterogeneous RFs to encourage diversity and 
maintain the generality, which is a similar method as a DF 
[1]. In a DRF method, the transformed feature vectors, 
augmented using the class vector generated by the previous 
layer, will then be applied to train the second and third 
layers of the cascade forests, respectively. However, 
because the correlation between the newly generated output 
vector and the augmented transform vector is weak, it may 
result in a slowing convergence and degrade the 
performance during the test. Therefore, in this study, we 
designed a model that uses only the output features of the 
previous layer as the new input features of the next layer 
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without combining the transformed feature vector. 
During the learning process, the output vector of one 

layer is successively the input vector of the next layer. The 
decision to add a new layer to the DCRF depends on 
whether the validation performance converges. To 
automatically determine the number of layers and 
parameters while reducing the risk of an overfitting, we use 
five-fold validation.  

After finishing the training of the DCRF, given a test 
image, we first extract raw feature vectors from a given 
window size and then input individual feature vector into 
the first layer one-by-one. The outputs of the first layer are 
concatenated, and these transformed feature vectors, 
augmented with the class vector generated by the first layer, 
are input into the next layer until the data are mapped to the 
final layer. The final layer averages the probability values 
of each class and determines the class with the highest 
probability value as the final class. 

3. Experiment Results 

There are many benchmark databases for evaluating the 
DNN. In this paper, we use the MNIST handwriting digit 
recognition dataset, which is commonly used in many DNN 
related studies, for the fair performance evaluation of the 
proposed DCRF with other related methods. 

In this experiment, we compared accuracy, the number 
of parameters, and operations with the state-of-the-arts such 
as DF [1], DRF [2], and MobileNet [4] which are popular 
model compression method using the MNIST dataset.  

As shown in Table I, the proposed method is similar to 
MobileNet in terms of the number of parameters. However, 
the accuracy and the number of operation of the proposed 
method are superior to that of MobileNet. Moreover, unlike 
MobileNet, the DCRF method has the advantage of a CPU- 
rather than GPU-based operation. 

TABLE I.  COMPARISON BETWEEN THE NUMBERS OF PARAMETERS 
AND OPERATIONS FOR THE PROPOSED METHOD AND FOUR COMPRESSION 

MODELS USING THE MNIST DATASET.  

Methods 
Operat

ion 

Accuracy 

(%) 

No. of 

parameters 

(M) 

No. of 

operations 

(M) 

MobileNet [4] GPU 96.5 1.32 76 

DF [1] CPU 98.96 4.15 0.105 

DRF [2] CPU 98.89 3.78 0.061 

Proposed 
DCRF 

CPU 98.0 1.8 0.016 

Among DF and DRF-based methods, DRF [2] requires 
smaller number of parameters and operations compared to 
DF [1] because of its smallest number of trees. However, 
accuracy of DRF [2] is 0.07% lower than the DF. Although 
the proposed DCRF has 0.89% and 0.96% lower accuracy 
than DF and DRF, it requires about 2.1~2.3 times and 
10.1~6.6 times less parameters and operations than DF and 
DRF. In terms of memory and operation, the proposed 
DCRF method can be optimized for embedded systems. In 
terms of accuracy, the proposed DCRF is 0.96% lower 
accuracy than DF because we used only two layers. 
However, if we add more layers, we can expect better 

 
Fig. 1. Deep coupling random ferns model using one scanning window for features extraction and layer-by-layer structure consisting of several random 
ferns. The outputs of each layer are concatenated and input to the next layer until the data are mapped to the final layer. The final layer averages the 
probability values of each class and determines the final class with the highest class probability value. 
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performance. However, when compared with MobileNet, it 
shows a 1.5% improvement in performance, which means 
that it can be used efficiently in a CPU-based embedded 
system. 

4. Conclusion 

Although DNN is a powerful algorithm for classification 
and regression problems, it requires too many parameters, 
a careful parameter tuning, a huge amount of training data, 
black-box models, and a pre-trained architecture. Therefore 
this study proposed a DCRF architecture which is a non-
neural network style deep model. In the proposed DCRF, 
we assigned only 90 Ferns to an individual RF to reduce the 
number of parameters, and we proved that the recognition 
accuracy is improved based on a performance evaluation 
conducted using a few state-of-the-art DF, DRF, and DNN-
based model compression algorithm. The proposed method 
showed a higher uniform performance in terms of the 
number of parameters and operations without a loss of 
accuracy. Future research will improve the number of 
layers of the model and reduce the number of Ferns while 
improving similar performance to existing Deep model and 
apply it to various application studies. 
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